AUTOMATED WORKFLOWS FOR THE INTEGRATION OF REGIONAL 3D-GEOLOGICAL MODELS

Dirix Katrijn, Deckers Jef, Hambsch Lorenz, Van Haren Tom, De Koninck Roel, Rombaut Bernd, De Nil Katrien
CONTEXT
By order of ‘Flemish Planning Bureau for the Environment and Spatial Development’

- **G3Dv2-model** (2013): first 3D geological model of Flanders
- **G3Dv3-model** (2019): Updated & refined 3D geological model of Flanders
- **H3D-model** (2019): G3Dv3-model translated into hydrogeological model for Flanders and adjacent areas

Goals 2013 – 2018:

- **Detailed models** for subsurface applications
- **Faults in 3D** (SKUA-GOCAD)
- **Linking** geological and hydrogeological units/models
- Large existing **seismic dataset**
- **Parametrization** of near-surface resources (voxel models)
- **Cross-boundary** harmonization of models (H3O-projects)
- **Integration** existing and new models into **comprehensive models**
- **Integration in DOV**
2013 - 2018

New models

- Voxel models of resources (2015 & 2017)

Existing models

- G3Dv2
- HCOV

Integration & automatization

- 3D Faults
- Modifying, updating & refining previous models

DOV database

G3Dv3 + H3D models
- New 3D (hydro)geological models of Flanders (Palaeozoic to Quaternary):
 - 117 geological layers
 - 139 hydrological layers

- Output for each layer:
 - 100 x 100 m raster files of top, base, thickness
 - Shapefiles of geological occurrences, fault intersections, isolines

> 1500 maps needed to be produced
AUTOMATED WORKFLOW
MODELLING TASKS

- **Combine** input data into standardized formats
- **Convert stratigraphy** (cross-boundary projects, (hydro)geological units)
- **Re-model** input data (if necessary)
- **‘Knit’ raster files** from layers of different projects together across buffer
- **Model detail (new layers)** into existing models
- **Model 3D fault planes** (and extend outside their limits in existing projects)
- **Ensure fault-fault contacts** from different model areas
- **Ensure layer-fault contacts**
- **Ensure overall model consistency** (detect modeling errors)
- **Store the model**
- **Calculate derived products**

 - top, base, thickness
 - borehole sets
 - metadata
 - figures
 - fault traces
 - geographic extent
 - isolines
DATA STORAGE

Layer A
x
y
z

Layer A
polygon

POSTGIS

Fault 1.dxf

Fault 1
polygon

SCRIPT TOOLCHAIN

Interpretations from boreholes, seismics, gravimetrics, mining, geomorphology, previous models,...

Top/ Base/ Thickness maps → Stratigraphy → 3D fault planes → Geological occurrence area → Conversion table

Base of each layer → Fault-corrected base layers → Check layer consistency → Output maps (top/base/thickness/...)

Hydrology maps
- Modeled layers = base or top or thickness
- Stratigraphy = list of stratigraphic position of modeled layers
- Set of logical rules uses stratigraphy to transform input into base layers for each unit
- Each base is stored in db for further use
- In many base layers, faults were vertical ➡️ Needed tilting based on 3D fault planes
- Geological occurrence area to spatially clip base layers

- Layer consistency check used stratigraphic column and thickness calculations to detect errors
- Stratigraphy table + clipped base layers are used to calculate top- and thickness layers for each unit
- Calculated layers are converted to required outputs, e.g.: 100 x 100 m raster maps in generic ASCII format
- Hydrology units can (generally) be derived from geology units
- Use conversion table + simple script to convert names
RESULT

> 20.000 files

34.5 GB of output data
CONCLUSIONS

Lessons learned:
- Include IT from beginning of the project
- Make sure the geo-IT part does not become ‘black box’ for the geologists
- Foresee enough time for QC of the automated results

Advantages:
- Efficiency gain => time saved by automated steps gives more space for geology
- Error reduction (iterative process of model generation)
- Reproducible results
- Structured methodology
- Data consolidation (no more data lost in subfolders or version problems)