RESQML V2.2
How the Geomodeling Community can take benefit of this standard?

Dr Jean François RAINAUD,
Energistics RESQML SIG executive team member
Research Engineer @ IFPen (3D Geomodeling Product Project Manager)
CEO@GEOSIRIS

On behalf of: www.energistics.org
Who is Energistics and who participates
Who is Energistics

- Energistics is a global, non-profit, membership consortium that facilitates the development and adoption of technical open data exchange standards in the upstream oil and gas industry.

 - **Membership** consists of IOCs, NOCs, oilfield service companies, software vendors, system integrators, regulatory agencies, universities and the global standards community.

- **Standards** are developed by workgroups (known as Special Interest Groups, or SIGs) made up of industry experts from member companies.

 In summary, the standards are created *by* the industry *for* the industry, facilitated by Energistics.
What is RESQML?
What Is RESQML?

RESQML is an XML- and HDF5-based data-exchange standard that facilitates reliable, automated exchange of data among software packages used in subsurface workflows. RESQML consists of a set of XML schemas (XSD files) and other standards-based technology, which developers implement into software packages. Software that has implemented RESQML can read and write the standard format.

RESQML has been developed by a global consortium of operators, service companies, software vendors, and government agencies under the umbrella of Energistics.
A solution to exchange Geomodels

- On The entire workflow
 - Seismic to simulation
 - All kinds of grids
 - Traceability via metadata
 - Coordinate systems, etc.

- Supported by Geosciences Vendors
 - Already commercial
 - Paradigm / Roxar / Schlumberger / CMG / DGI / IFP En Group
 - Internally used
 - Total / Shell / BP / ExxonMobil
 - Open and free of charge!
PARTICULARITIES OF RESQML

- Based on an UML 2 MODEL designed by Vendors and Petroleum Cies
- Inherits of more than 25 years of shared industrial Experiences
- Can be used on the entire geomodelling Workflow (in Petroleum Industry)
- Traceability is embedded (citation ISO 19115 and Activity Model).
- The Model is more complete than Models manipulated by Vendor products
- It is delivered, documented and maintained by an Open Consortium.
- Training, Open source APIs and software utility tools are available
PARTICULARITIES OF RESQML

THE FIRP: Feature / Interpretation / Representation / Properties

- Reference (Individuals and Models)
- Interpretation Meta Information
- Topology & Geometry
- Properties (attached to topology)
PARTICULARITIES OF RESQML

FEATURE
- INDIVIDUALS: ROCK / BOUNDARIES /
- WELLS /
- MODELS: STRUCTURAL /
- STRATIGRAPHIC / RESERVOIR
- REFERENCE to be managed At the Corporate Level

INTERPRETATIONS
- RESQML SPECIFIC
 - Designed to help Geomodelers iterations (very next to GeoSciML semantic)

REPRESENTATION = TOPOLOGY & GEOMETRY

PROPERTIES

CRS (COORDINATE REFERENCESYSTEM)

IN MOST OF CASES ,
- These two Levels are the only ones Managed by the Applications
PARTICULARITIES OF RESQML

UUID: Universal Unique ID on each top level element
Plenty of XML files associated in the Energistics Packaging Convention (EPC)

Zip File: .epc
Hdf File: .h5

Structured Binary Data

Can be formatted using

WITSML™
PRODML™
RESQML™
The original Use – Case

Example of How RESQML Works

User A, a geologist, builds a structural and stratigraphic framework in a geological interpretation package, then saves the horizons (H) and faults (F) in the RESQML format, stored in an EPC file (named EPC_A), and sends it to User B.

User B, a modeller, imports EPC_A containing the RESQML framework into a geomodelling package, and builds a grid (G), making minor adjustments to the horizons and faults as needed. User B then creates a new EPC file (EPC_B) to send to the next user in the workflow.

Software saves data to their native file formats. Users choose when/if to write/read RESQML files.

EPC_A is discarded after it has been read.
The partial exchange Use – Case

Partial Exchange

- To transfer a RESQML data object—in correct context—without all of its associated data objects and/or data.
- Do this when the model/data objects have been previously transferred and now you only want to transfer new or updated data.
EAGE ‘2011, Demonstrating the implementation of RESQML V1.1
Alwyn reservoir modelling & simulation workflow

ALWYN INTERPRETATION DATA SET
- 1 geodesy
- 3 horizons
- 4 faults
- Well markers
- metadata (bibliography, creator name, creation date, contributor name, ...)

OUTPUT DATA SET
- Simulated Reservoir Model (grid & properties)
- metadata (creator name, creation date, contributor name, ...)

Seismic interpretation
(Sismage)

Structural modeling
(Skua)

Gridding
(Petrel)

Dynamic reservoir fluid flow simulation
(Imex)

Static property modeling and upscaling
(Open-Flow)

QC
Work flow followed for the second iteration:
A first iteration with 4 faults was realised previously
In this case 5 faults were considered
SOFTWARE A: Update the Fault Network
Step 2.1: Add (re-pick) NS3 fault.

Iteration 1 (left) and Iteration 2 (right)
SOFTWARE B: Update the Structural Interpretation

Step 2.2: Review geological interpretations.

Considered Faults: NS1a, NS1b, NS2, T1

- Fault NS1a Stops at Fault T1 on its Footwall Side
- Fault NS1b Stops at Fault T1 on its Hanging Wall side
- Fault NS2 Stops at Fault T1 On its Hanging Wall Side

Considered Faults:

- NS1a, NS1b, NS2, T1, NS3
 - Fault NS3 stops at Fault NS1b on its hanging wall side
 - Fault NS3 stops at Fault NS2 on its foot wall side
SOFTWARE C: Build the Structural Framework

Step 2.3: Update the structural framework and fill an *a priori* volume model for further seismic attribute inversion.
SOFTWARE D: Build the Grid
Step 2.4: Build a 3D reservoir grid.

Iteration 1 (left) and Iteration 2 (right)

IJK reservoir coarse grid
SOFTWARE E: Upscale the Model

Step 2.5: Upscale the fine-scaled geologic model into the coarse-scaled simulation model.

IJK reservoir coarse grid with static properties (porosity) upscaled

Iteration 1 (left) and Iteration 2 (right)
Iteration 2 of the workflow results in a better history match (alignment of circles (production data) and solid lines (model)), without rebuilding the entire model from the beginning, updating/adding only the data required to add one more fault.
The Situation Today

- Last year, nearly all vendors in Petroleum Geosciences were adopting RESQML.
- Their priorities were focused on Structural and Grid representations exchange.
- But the traceability advantages (UUIDs, Citation, Activity model) and the interpretation management are not used as much as we could.
- Nevertheless, we can import/export nearly all the entities in the geomodeling process with this standard.
- It's looks mature and utilities to use it are Open source and free of charge.
 - You can find C++, C#, java read/write APIs, 3D user oriented « Paraview » visualisation, EPC exploration debugging and Validation Tools.
How the Geomodeling Community can take benefit of this standard?
How the Geomodeling Community can take benefit of this standard? first by adopting and using it:

- By having access to IndividualRepresentation and Model embedded in major Vendor databases.
- By exchanging Consistent Models between vendors or research products.
- By having the opportunity to participate to « well known » but today closed Geomodeling workflows.
- By having the opportunity to express the result of a Geomodeling workflow in a standard way and archive it for the future without « product versions numbers difficulties ».
- By having the opportunity to develop and control new « Open Workflows » using a RESQML Standard EPC to progress Step by Step in the workflow by using the ACTIVITY MODEL.
The RESQML Activity Model

- A RESQML ACTIVITY (defined by Key Words)
 - Can have RESQML Entities as Input
 - Can have Parameters as Input
 - Can produce RESQML Entities
 - AND …. Can be linked to the Resulting RESQML Entities

- Then, step backward to step backward you can go back
 And have a look on
 The entries and the task done
 For a given entities during
 this step of the workflow.
 And the step before…..
 And the step before…..
 And the step before …..
Secondly by joining Initiatives which will be launched in the next Future...

- First of all we can imagine a « Data Lake » as information repository about all the individuals feature and models of your survey : méta data, binary files, relationships and activities done.

- From the beginning of a study you can start to fill it dynamically up to the archive step.

- When you fill it you can set up a kind of Index for all these « Top level » entities together with a way to retrieve this information.

- This could be a first usage : we are starting to experiment it.

- The second will be to organize a Work flow of semantic WEB services.
A Data Lake RESQML USE CASE

APPLICATION A

EPC

STRUCTURED BINARY DATA

ANALYSE and INDEXING

META DB

ENTITIES AND MODEL SELECTION

EPC + Hdf5 CREATION

storage

DATA LAKE

restitution

APPLICATION B

STORAGE

STRUCTURED BINARY DATA
One more RESQML USE CASE (data and meta data WEB Access)

APPLICATION A

APPLICATION B

ENTITIES AND MODEL SELECTION

HDF5 (REST) SERVICE

META DB WEB SERVICES

HDF5 (REST) SERVICE

META DB WEB SERVICES

storage DATA LAKE

resitution

EPC

ANALYSE and INDEXING

structured binary data
Conclusion

• More and more Use cases / Workflows of Geomodeling can be set up by using the RESQML Model

• Each of them can « liberate » the users from closed workflows or closed database management
 • For the data lake initiative you just have to manage what you deliver to the Data Lake and publish a RESQML epc that everybody could freely understand)

• Any type of Intelligent procedure (data mining, knowledge capture, knowledge extraction, knowledge diffusion) could be applied on the xml file « semantically designed » delivered in the datalake

• Then, we will be able to propose more and more capabilities to the users

On our side we are starting to implement some innovative initiative and we are ready to share technology and experience with the Geomodeling community.
Work flow followed for the first iteration:
Only 4 faults were considered