www.geus.dk





# Examples of hydrogeological and geological modelling from geophysical data

Flemming Jørgensen

Geological Survey of Denmark and Greenland

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

### Translating resistivity to geology or hydrogeology – limitations:

- The degree of saturation
- The ion content of the pore water
- Clay content
- Clay type
- Vertical resolution capability
- Horizontal resolution capability
- Weak resolution of resistive layers
- Spatial variations in property
- Depth of penetration, DOI
- Coupled and noise-infected soundings
- Model equivalency, model uncertainty
- The type of model used blocky or smooth model

## **Data interpretation**



#### Some Danish sediments:

| Sediments                        | Resistivity ( $\Omega$ m) |   |
|----------------------------------|---------------------------|---|
| Meltwater sand and gravel        | >60                       |   |
| Clay till                        | 25-50                     | • |
| Glacio-lacustrine clay           | 10 - 40                   |   |
| Neogene mica silt/sand: Miocene  | >40                       |   |
| Neogene mica clay: Miocene       | 10 - 40                   |   |
| Paleogene clay: Eocene-Oligocene | 5-12                      |   |
| Paleogene clay: Paleocene-Eocene | 1-7                       |   |
| Danian limestone                 | >80                       |   |

## Layer-based modelling

Basic digitalisation of interpretation points on maps, profiles and directly in 3D space





Resistivity [Ohm-m]

## Voxel modelling tools

Region grow selection



Jørgensen, F., Møller, R.R., Nebel, L., Jensen, N.-P., Christiansen A.V. and Sandersen, P.B.E 2013: A method for cognitive 3D geological voxel modelling of AEM data. Bulletin of Engineering Geology and the Environment.

#### GEUS

#### Cognitive, manual voxel modelling, octree discretization



 Voxels can be divided into 8 equally-sized in order to increase the level of detail





Jørgensen, F., Møller, R.R., Nebel, L., Jensen, N.-P., Christiansen A.V. and Sandersen, P.B.E 2013: A method for cognitive 3D geological voxel modelling of AEM data. Bulletin of Engineering Geology and the Environment.

GEOLOGICAL SURVEY OF DENMARK AND GREENLAND

## The Tønder-Leck survey

- 3230 line km
- 166 and 250 m spacing
- 721 km<sup>2</sup>

Jørgensen, F. et al. 2012: Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise. Hydrology and Earth System Sciences, 1845-1862.



#### **Geological interpretations**





Jørgensen et al. 2012

#### **Geological interpretations**





Resistivity [Ohmm]

100

1000

10

Jørgensen, F. et al. 2012: Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise. Hydrology and Earth System Sciences, 1845-1862.

## **Buried valleys**



#### Final voxel model



#### Voxel model, valley surface

