3D Models of the deeper underground – Case studies in the German North Sea

Federal Institute for Geosciences and Natural Resources – BGR

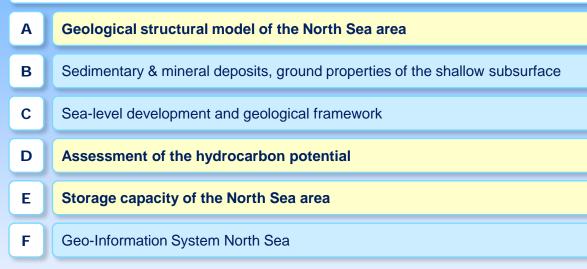
> Gesa Kuhlmann Stephan Steuer & GPDN-Team

Bundesanstalt für Geowissenschafter und Rohstoffe

Landesamt für Bergbau, Energie und Geologie

Joint cooperation of project partners:

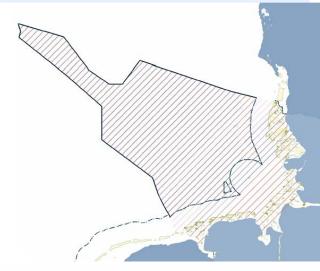
- Federal Institute for Geosciences and Natural Resources (BGR)
- State Authority for Mining, Geology and Energy (LBEG)
- Federal Maritime and Hydrographic Agency (BSH)


Aim of the project:

Acquisition and provision of basic geoscientific information supporting a sustainable development of maritime economic and natural area of the German North Sea area.

GPDN: Project structure

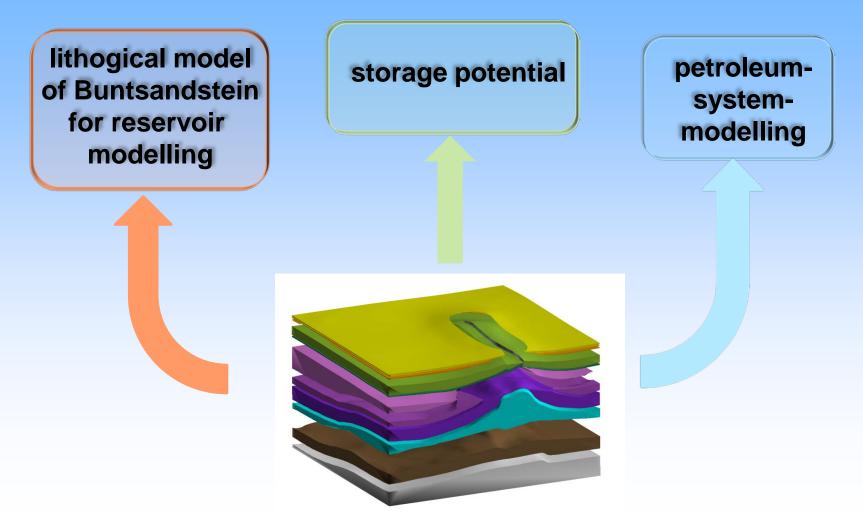
Geo-Potential of the German North Sea



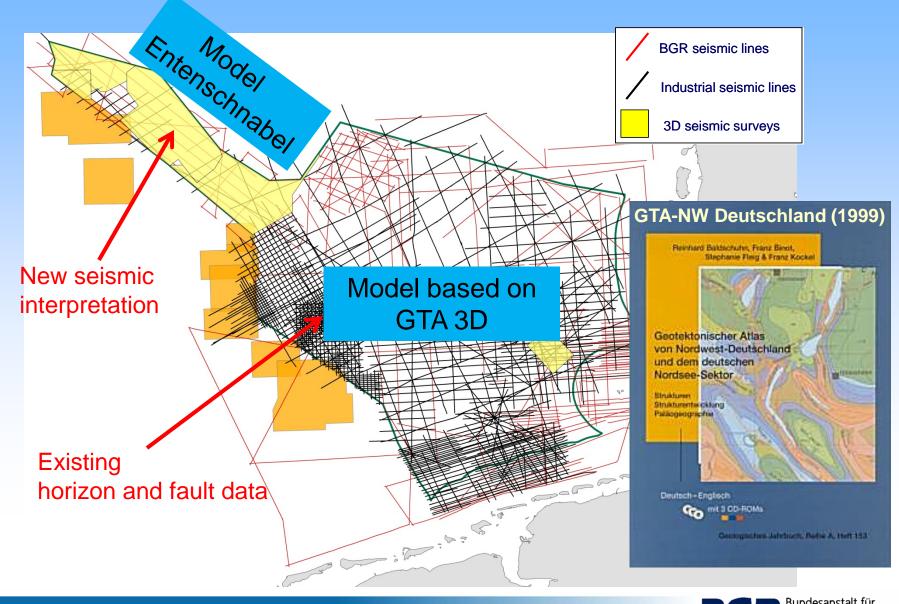
The project is subdivided into **six technical modules**, all closely connected in terms of content.

Project duration: 5 years (2009 until end of 2013)

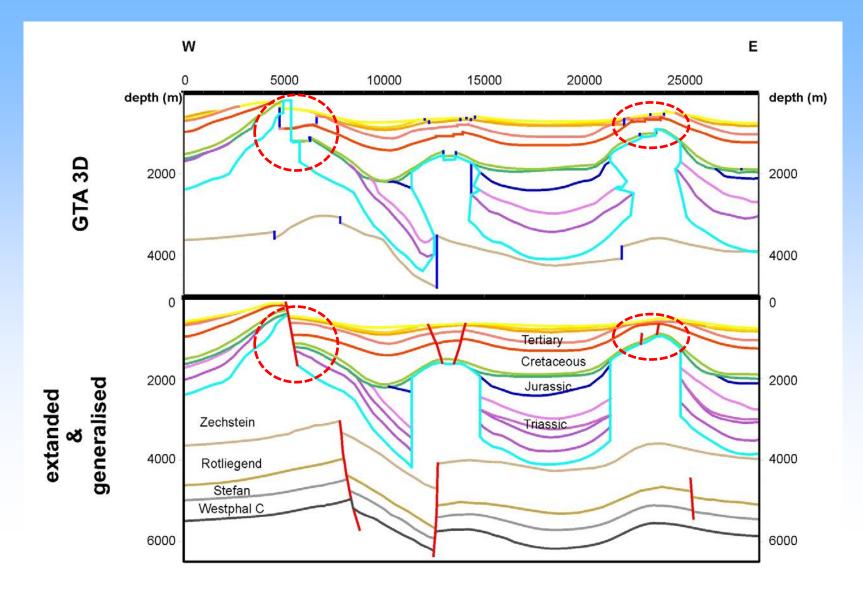
 In december, the results of the project will be presented in form of web-based, user-oriented products and made accessible for the private, business and research sector, as well as for public authorities.

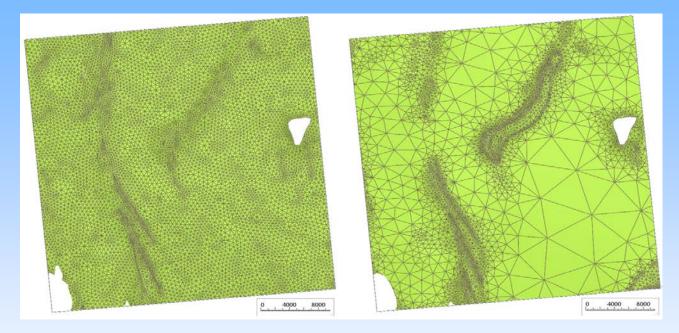

http://www.geopotenzial-nordsee.de

Bundesanstalt für Geowissenschaften und Rohstoffe

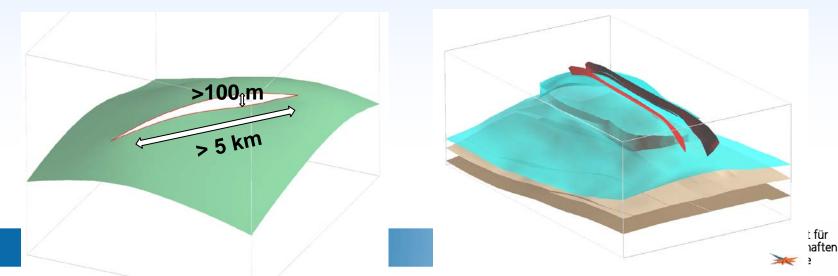

Motivation: three questions – one input model

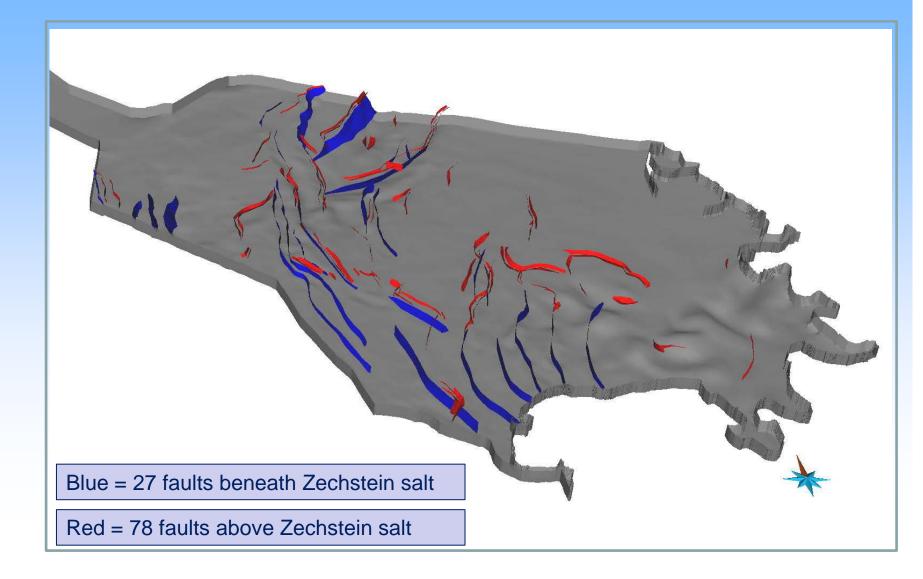
But different data coverage and data quality for model areas


Two model areas – two methodological approaches

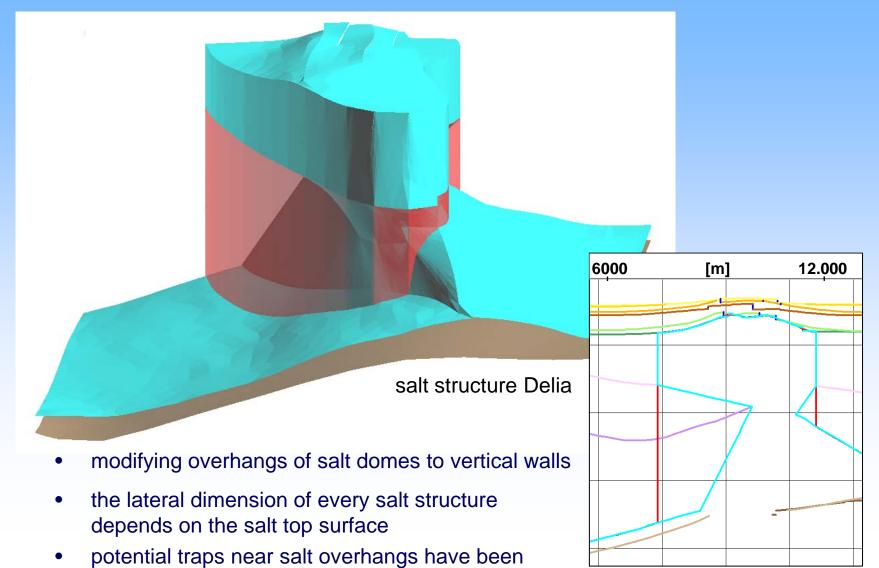


Problems with existing data => Model generalization with GOCAD




1) Horizon Modeling -> decimation and retriangulation

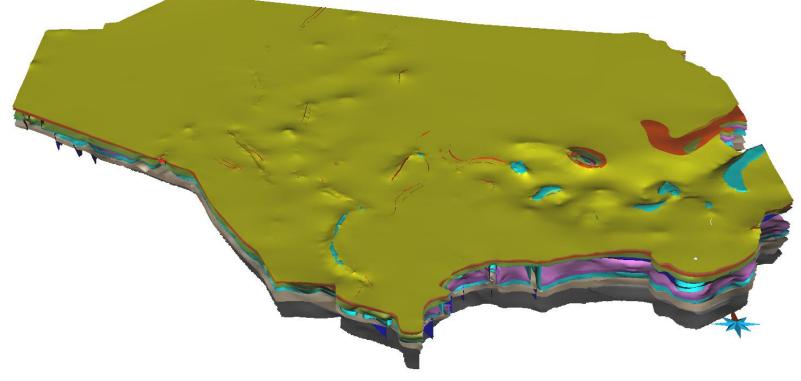
2) Fault Modeling -> criteria for vertical offset and fault length


Fault Model

Generalisation of salt dome geometry -> first input for Petrel model

BG

Bundesanstalt für

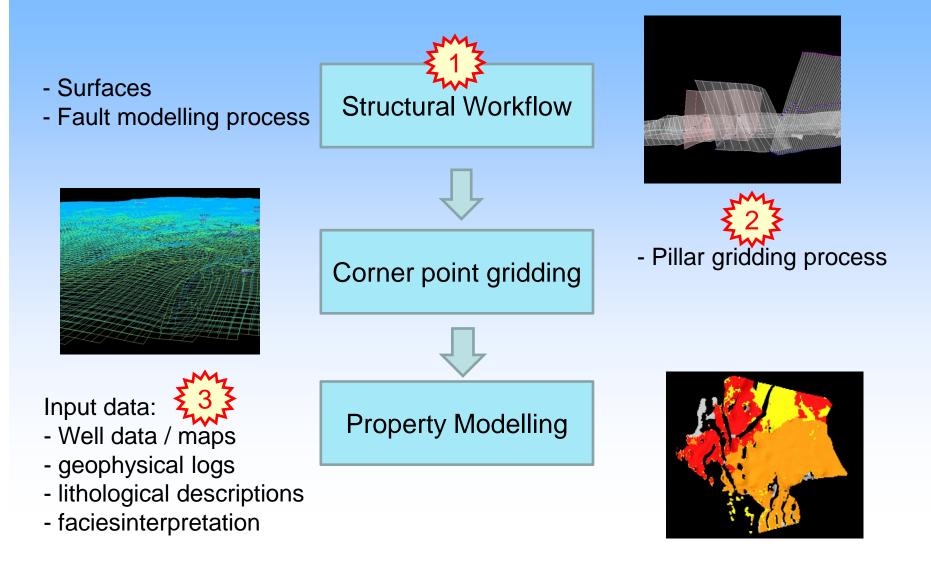

und Rohstoffe

Workshop on 3D geological modelling, Utrecht, September 17-18, 2013

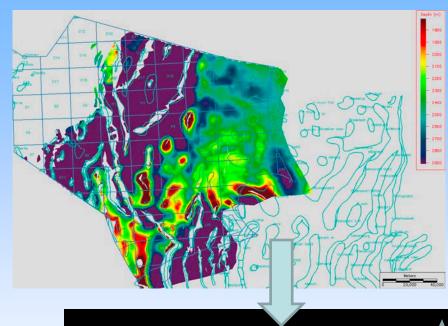
eliminated

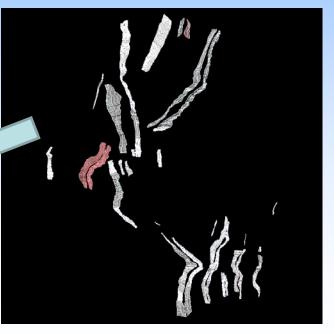
Result: Generalised structural model

- 17 base surfaces and 2 top surfaces from Namur up to the Middle Miocene / Seafloor
- 105 fault surfaces \rightarrow fault model with normal and strike-slip faults
- tringulated surfaces without multiple z-values



=> Consistent model ready to use for other applications (i.e. dynamic modelling)


Workflow for 3D facies-modelling with Petrel


Structural workflow

=> Structural model in Petrel

Surfaces taken from GOCAD grids together with new interpretation

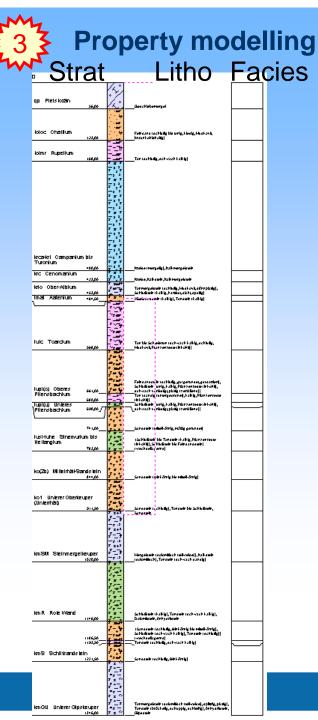
faults from GOCAD as fault surfaces

1) Huge problems in the grid around salt structures

Grid cells dependent on horizon parametres (conformable, discontinous etc)
 => solution: creation of faults around saltstructures

Is it only Petrel problem?

- Delimiting errors from fault model by try and error in the modelling process


2) In a regional model horizons have the same properties over the whole area

=> causes problems with gridding

Examples: conformable surface in one area vs. erosional in the other

if base Solling = erosional => cutting of saltstructures

GeODin – Output table as Access Database

87 127 152 230 355	q tolo tolm krca	M(g,s) fS(u4,t,brk),T(s),gS(ml-tru,ec)			
152 230 355	tolo tolm				
230 355				bngr,gr,dgr	
355	krca	T(u,k2,"gk","m","py",shm,ps)		blgr,gngr	
	nica	^kr(m),^mk(dc,mbrc,ebf)		wegr,hblgr	
205	krcc-krsa	^kr("py"),^mk(dc,rh)		wegr,blgr,hgngr	
385	krto	^kr("py"),^mk(u2,dc,rh,pg)		wegr,blgr	
520	krc	^k(kr),^mk(dc,rh,mbrc)		wegr,gr,gngr	
532	krl	^mt(u,"gl","gk",zf),^u(k,"gl",dc,"gk","ph")		gr,gngr,grbn	
583	jutc	T-^tbl(k2,u,s(wl),"gk","gl","py",pf(ik))	br	grgn,gr,swgr	
622	jupl(o)	fS(u,r4,so4),^u(t,k2,"m","py","gk",pf(ik))	br	gr,blgn,grbn,gel	
716	jusi(o)	^u(t,k,v2)	1	grbl	
743	jusi-juhe	^ms(u2,ce,(i),pf)	br	hgr,bngr,gebn	
755	jusi-juhe	^ms(u2,ce,(i),pf)	br	hgr,bngr,gebn	
425	krto	^kr("py"),^mk(u2,dc,rh,pg)		wegr,blgr	
440	krto	^kr("py"),^mk(u2,dc,rh,pg)		wegr,blgr	
703	jupl(u)	T-^tbl(k,"py","gk",pf(ik))	1	grbl	
840	ko2	^u-^t(k,"py","gk",ko,klm,brl),^u-fS(k2,"gk	1	blgr,vigr	
949	kmSM	^t(u,"py",brl),^mt(erd,lc),^m(pg,mbrc)		bu,orbn,ol,hgr,ri	
1142	kmGO	^u(car,"m",erd,pg,brs,lc,p2),^t(car4,erd,s		swbn,robn,dgr,c	
1194	kmS	^s(kgf-kgm,u),^u(t,s,k2,erd),^t(u4,s4)		vibn,gr,robn,grg	
157	tolm	^u(s,(t),ce,p)		hgr	
240	krca	^u(t,"gk"4,k2,"py",brl)		gnsw	
250	krca	^kr(m),^mk(dc,mbrc,ebf)		wegr,gr,hblgr	
idm		^md			
470	krtm	^kr("py"),^mk(u2,dc,rh,pg)		wegr,blgr	
481	krtu	^kr("py"),^mk(u2,dc,rh,pg)		wegr,blgr,ro	
642	jupl(o)	T(s2,k2,pf),^mt(s2,dc,brl)	br	grbl,grvi	
660	jupl(o)	^u-fS(t2,k,"m",v2)	br	grbn,gr	
671	jupl(o)	T(k,"gk","py",shm-klm)	br	dgr	
685	jupl(o)	^u-fS(k2,"gk",pf(ik),v2)	1	grbl,vigr	

=> Making automatisation difficult

Sk

٨k

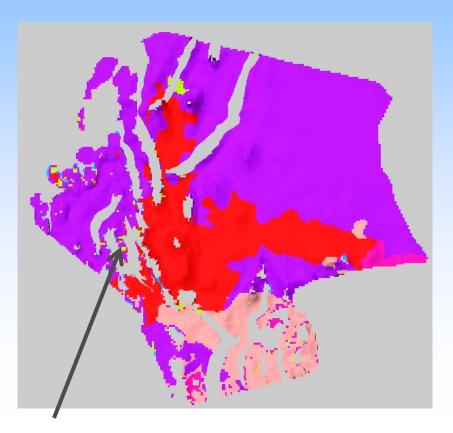
^k ^k

bas

ban

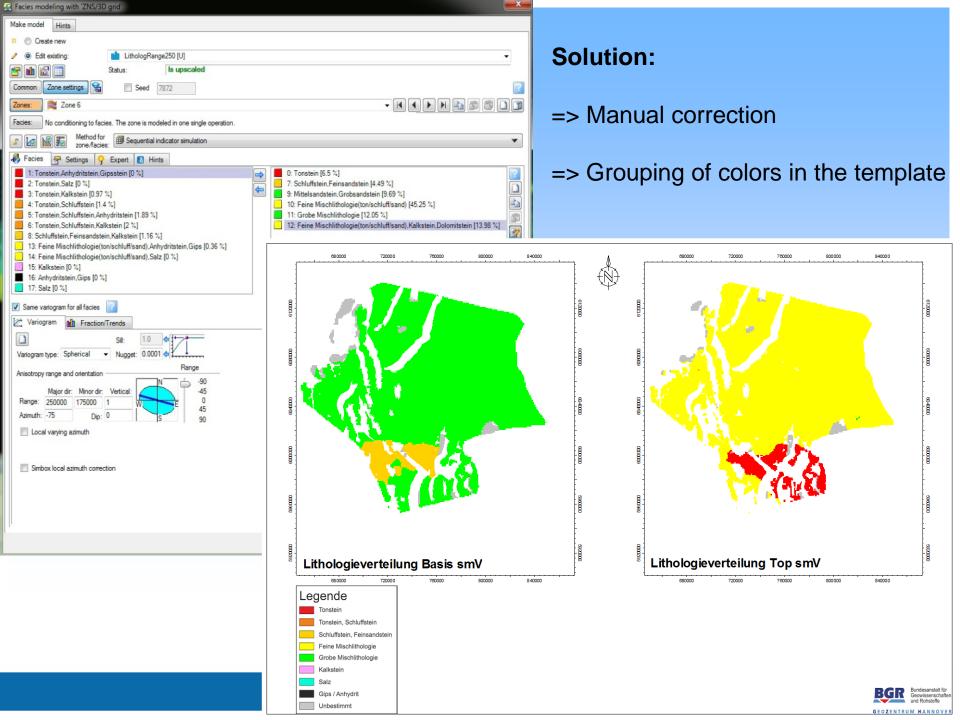
lgd

ban

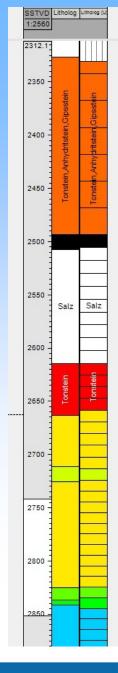


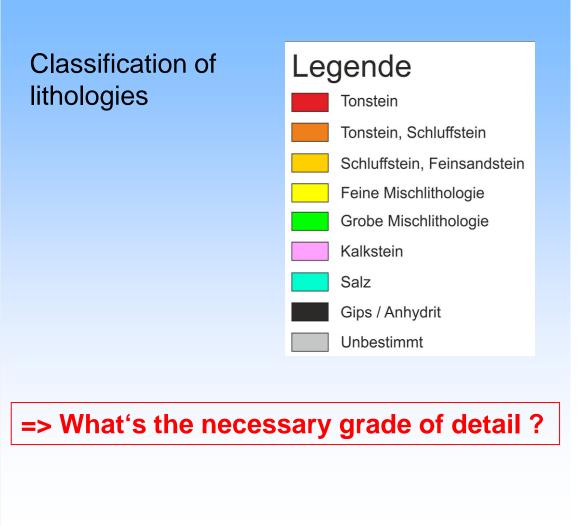
17 lithologies

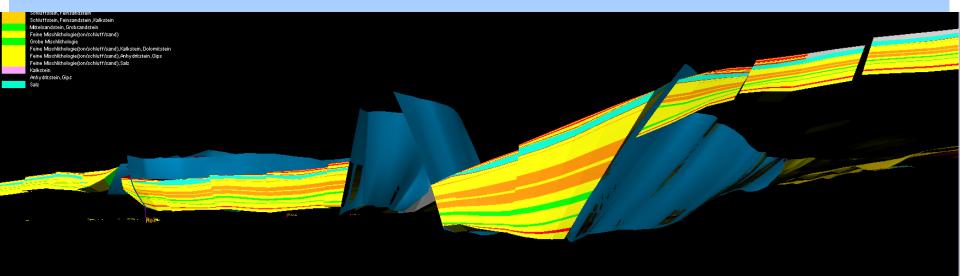
Facies modeling with 'ZNS/3D grid'					
Make model Hints					
Create new					
Edit existing: LithologRange250 [U]	•				
Status: Is upscaled					
Common Zone settings 😪 🖉 Seed 7872					
Zones: Zone 6 • N A B S S D 3					
Facies: No conditioning to facies. The zone is modeled in one single operation.					
Method for zone/facies: Sequential indicator simulation	•				
🐺 Facies 👰 Settings 💡 Expert 👔 Hints					
1: Tonstein,Anhydritstein,Gipsstein [0 %]	🔿 📕 0: Tonstein (6.5 %)				
2: Tonstein,Salz [0 %]	7: Schluffstein,Feinsandstein [4.49 %] 9: Mittelsandstein, Grobsandstein 19.69 %]				
3. Tonstein,Kalkstein [0.97 %] 3. Tonstein,Schluffstein [1.4 %] 4. Tonstein,Schluffstein [1.4 %] 10. Feine Mischlithologie(ton/schluffisand) [45.25 %]					
5: Torostein, Schluffstein, Anhydristein [1.89 %] [11: Grobe Misschlithologie [12.05 %]					
5: Tonstein,Schluffstein,Anhydritstein [1.89 %] 11: Grobe Mischlithologie [12.05 %] 6: Tonstein,Schluffstein,Kalkstein [2 %] 12: Feine Mischlithologie(ton/schluffisand),Kalkstein,Dotomitstein [13.98 %]					
8: Schluffstein, Feinsandstein, Kalkstein [1.16 %]					
13: Feine Mischlithologie(ton/schluff/sand), Anhydritstein, Gips [0.36 %]					
 14: Feine Mischlithologie(ton/schluff/sand).Salz [0 %] 15: Kalkstein [0 %] 					
16: Anhydritstein,Gips [0 %]					
17: Salz [0 %]					
Same variogram for all facies					
Variogram M Fraction/Trends					
Sil: 1.0 0					
Variogram type: Spherical - Nugget: 0.0001					
Range					
Anisotropy range and orientation					
Major dir: Minor dir: Vertical:					
Range: 250000 175000 1 W E 0 45					
Azimuth: -75 Dip: 0 S 90	2				
Local varying azimuth					
Simbox local azimuth correction					
	Apply V OK Cancel				

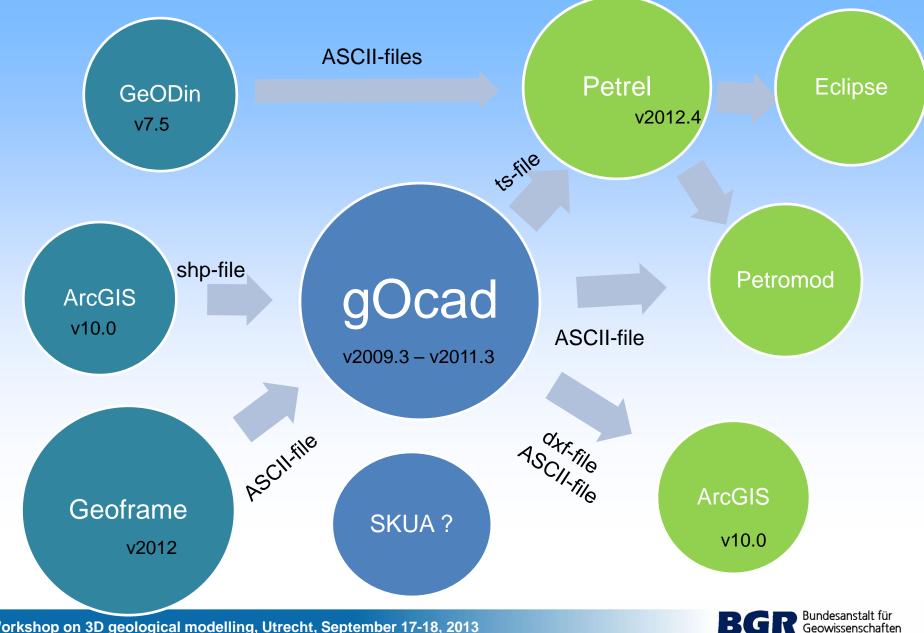

Statistics: SIS algorithm

borehole radius: 250 km




Areas with randomly filled properties


Generalisation by upscaling



Facies model ready to use for dynamic modelling

One model – different software solutions

und Rohstoffe

Summary – Open Questions - Discussion

Modelling of salt structures in GOCAD and Petrel -> consequences for gridding process

Automatisation of well parameters / lithological descriptions -> Grade of detail / databases

Software issues
-> which software to use / best workflow ?

